

Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3410U10-1

S24-3410U10-1

THURSDAY, 13 JUNE 2024 – MORNING

**CHEMISTRY – Unit 1:
Chemical Substances, Reactions and Essential Resources
FOUNDATION TIER**

1 hour 45 minutes

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	5	
2.	7	
3.	7	
4.	6	
5.	6	
6.	7	
7.	6	
8.	10	
9.	6	
10.	7	
11.	6	
12.	7	
Total	80	

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question **9** is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

JUN243410U10101

BLANK PAGE

**PLEASE DO NOT WRITE
ON THIS PAGE**

02

Answer **all** questions.

1. This question is about mixtures and how to separate them.

(a) Draw **one** line from each mixture to the method used to separate the mixture. [4]

Mixture	Method
A ethanol and water	filtration
B sand and water	evaporation
C iron filings and sulfur powder	distillation
D salt and water	using a magnet

(b) Which of the mixtures, **A**, **B**, **C** or **D**, contains a **solid** that has dissolved in water? [1]

.....

2. (a) When lithium reacts with water in a large beaker hydrogen gas is released.

Lithium hydroxide solution is also formed. This turns universal indicator purple.

(i) Tick (✓) the box next to the description of what is seen when lithium reacts with water in a large beaker. [1]

lithium melts into a ball and sinks

lithium fizzes and moves around the surface of the water

lithium catches fire and burns with a blue flame

(ii) Tick (✓) the box that describes lithium hydroxide solution. [1]

neutral

acid

alkali

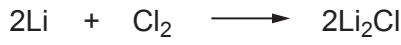
(iii) Lithium hydroxide contains Li^+ and OH^- ions.

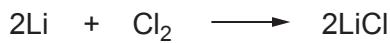
Circle the correct formula for lithium hydroxide. [1]

liOH

LiOH

Li(OH)_2


Li_2OH



(b) Lithium reacts with chlorine to form lithium chloride.

(i) Tick (✓) the box next to the correct balanced equation for the reaction. [1]

(ii) Anwen was asked to use a flame test and a silver nitrate test to identify lithium chloride.

Circle the expected observation for each test. [2]

Flame test

green flame

Silver nitrate test

yellow precipitate

red flame

blue precipitate

lilac flame

white precipitate

(c) Lithium reacts with oxygen to form lithium oxide.

Tick (✓) the box next to the calculation used to find the relative formula mass (M_r) of lithium oxide, Li_2O . [1]

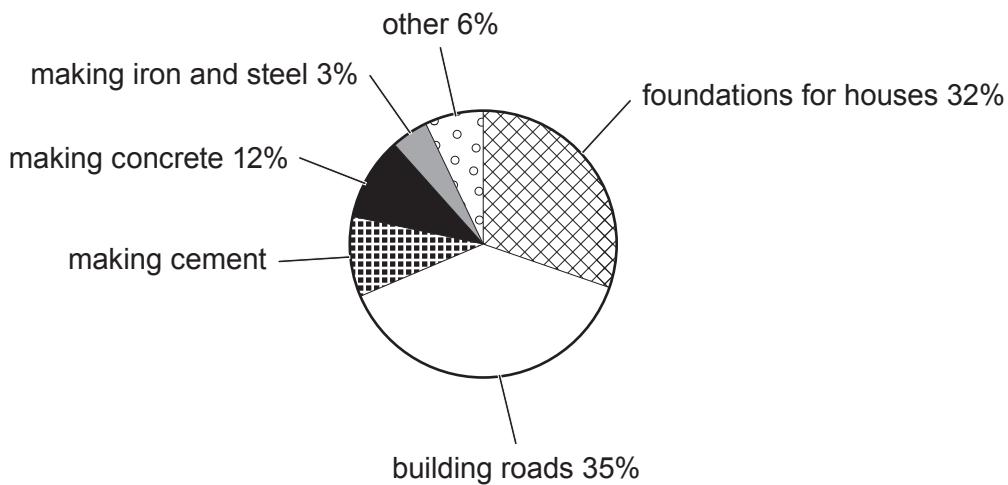
$$A_r(\text{Li}) = 7$$

$$A_r(\text{O}) = 16$$

$$7 + 7 + 16$$

$$7 + 16$$

$$7 + 7 + 16 + 16$$


$$7 + 16 + 16$$

7

3410U101
05

05

3. The pie chart shows some of the major uses of limestone.

(a) Use the pie chart to find the percentage of limestone used to make cement. [2]

Percentage = %

(b) When limestone is heated, it produces calcium oxide and carbon dioxide.

(i) Complete the equation for this reaction by giving the formula of calcium oxide. [1]

(ii) Underline the name for this type of reaction. [1]

displacement **decomposition** **precipitation** **neutralisation**

(iii) When water is added to calcium oxide, an exothermic reaction occurs.

Tick (✓) the observation that shows that this reaction is exothermic. [1]

solid forms

colour changes

ice forms

steam is given off

(c) Give **two** benefits of limestone quarrying. [2]

.....
.....

4. Atoms are made of protons, neutrons and electrons.

Some of the properties of protons, neutrons and electrons are shown in the table.

Particle	Mass	Charge
proton	+1
neutron	1	0
electron	0

(a) **Complete the table.**

[2]

(b) Element **X** has 7 protons, 7 electrons and 7 neutrons.

Use this information to complete the following sentences.

[4]

The atomic number of element **X** is

The mass number of element **X** is

The electronic structure of element **X** is

Element **X** is in Group of the Periodic Table.

6

5. Diagrams **A**, **B**, **C** and **D** represent argon (Ar), nitrogen (N_2), oxygen (O_2) and carbon dioxide (CO_2), but not in that order.

A**B****C****D**

(a) Give the **letter** of the diagram that represents argon. [1]

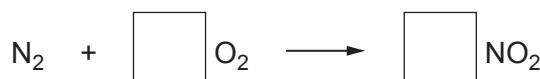
.....

(b) Give the **letter** of the diagram that represents a compound. Give a reason for your answer. [2]

Letter

Reason

.....


(c) (i) Use information from the diagrams above. Draw a diagram to represent a molecule of nitrogen dioxide, NO_2 . [1]

(ii) Calculate the relative formula mass (M_r) of nitrogen dioxide, NO_2 . [1]

$$A_r(N) = 14 \quad A_r(O) = 16$$

$$M_r = \dots$$

(iii) Balance the equation for the reaction between nitrogen and oxygen to produce nitrogen dioxide. [1]

6. Acid rain is formed by sulfur dioxide gas from industrial processes escaping into the atmosphere and reacting with water in clouds.

In recent years, scientists have developed sulfur scrubbers to stop sulfur dioxide gas escaping into the atmosphere from coal-fired power plants. The scrubbers are placed in the chimneys and trap the sulfur dioxide.

There are two types of scrubbers – wet scrubbers and dry scrubbers.

Wet scrubbers

Water is sprayed down the chimneys onto beds of crushed limestone. Sulfur dioxide is absorbed by the water forming an acidic solution which is neutralised by the limestone.

Wet scrubbing can be used in small and large power plants. During wet scrubbing 4% of sulfur dioxide escapes.

Dry scrubbers

A mixture of dry alkaline chemicals is sprayed into the chimneys. Some of the dry chemicals neutralise the sulfur dioxide.

Dry scrubbing is limited to small or medium sized power plants. No water is used so costs are lower. During dry scrubbing 10% of sulfur dioxide escapes.

(a) Tick (✓) the physical change happening to the sulfur dioxide in a wet scrubber.

[1]

it freezes

it dissolves

it condenses

it melts

(b) Tick (✓) the pH change that happens as a solution of sulfur dioxide is neutralised in a wet scrubber.

[1]

pH 11 to pH 7

pH 4 to pH 7

pH 7 to pH 11

pH 7 to pH 4

(c) The table shows some statements about wet and dry scrubbing.

Complete the table using a tick (✓) to show whether each statement applies to wet scrubbing only, to dry scrubbing only or to both wet and dry scrubbing.

[3]

Statement	Wet scrubbing only	Dry scrubbing only	Both wet and dry scrubbing
Can be used in large power plants			
At least 90% efficient			
Neutralises sulfur dioxide			

(d) The table shows the mass of sulfur dioxide released into the atmosphere per year in the UK every five years between 1990 and 2015.

Examiner
only

Year	Mass of sulfur dioxide released (millions of tonnes)
1990	3.50
1995	0.60
2000	0.40
2005	0.35
2010	0.30
2015	0.20

Describe the trend in the mass of sulfur dioxide released into the atmosphere between 1990 and 2015. [2]

.....

.....

.....

7

BLANK PAGE

**PLEASE DO NOT WRITE
ON THIS PAGE**

3410U101
13

13

7. (a) Three samples of water, **A**, **B** and **C**, were tested for hardness using soap solution.

The results are shown below.

- No lather formed in samples **A** and **B**
- Lather formed in sample **C**
- When sample **A** was boiled and soap solution added, lather formed
- When sample **B** was boiled and soap solution added, no lather formed

Tick (✓) **three** conclusions that can be drawn from these results.

[3]

sample **C** is soft water

all the samples are hard water

samples **A** and **B** are hard water

sample **B** contains temporary hardness

sample **A** contains temporary hardness

samples **A** and **B** contain permanent hardness

(b) Give **one** method other than boiling that can be used to remove hardness from water. [1]

.....

Examiner
only

(c) Tick (✓) the compound that causes hardness in water.

[1]

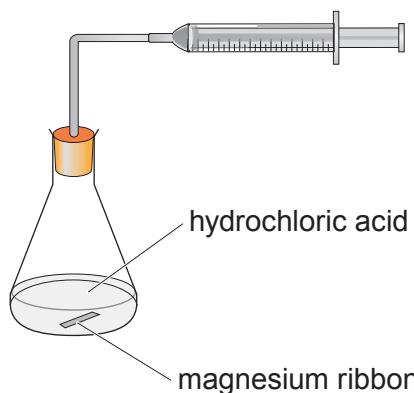
sodium nitrate

zinc chloride

calcium sulfate

potassium oxide

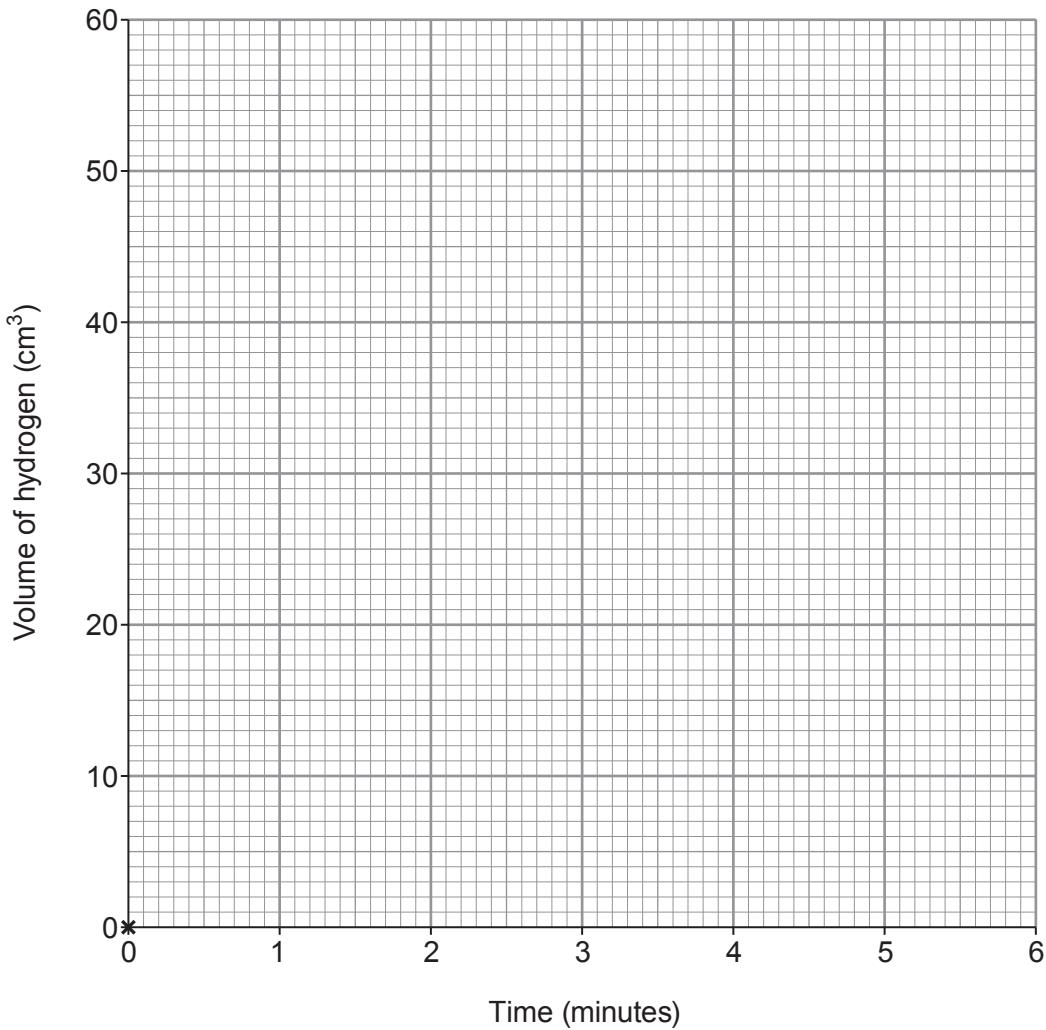
(d) Give **one** health benefit of living in a hard water area.


[1]

6

8. A group of students investigated the rate of the reaction between magnesium and dilute hydrochloric acid.

The equation for the reaction is as follows.


They carried out the reaction at 30 °C. The hydrogen gas was collected in a gas syringe and the volume recorded every minute for 6 minutes.

The results are shown in the table. The value at 1 minute has been left out.

Time (minutes)	0	1	2	3	4	5	6
Volume of hydrogen (cm ³)	0		29	39	46	50	50

(a) (i) Plot the volume of hydrogen produced against time on the grid. The first point has been plotted for you. Draw a suitable line. [3]

(ii) I. Use your graph to estimate the volume of hydrogen that would have been produced after 1 minute. [1]

..... cm³

II. Calculate the mean rate of the reaction over the **first** minute. Give your answer in cm³/s. [2]

Use the formula

$$\text{mean rate} = \frac{\text{volume of hydrogen (cm}^3\text{)}}{\text{time (s)}}$$

Mean rate = cm³/s

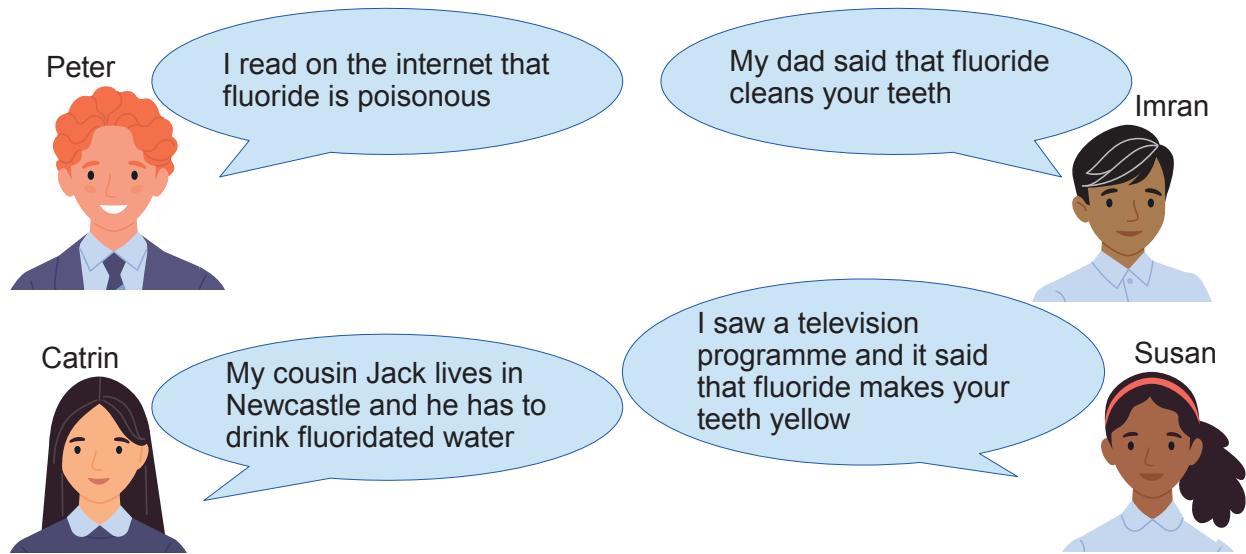
(b) There is no catalyst for this reaction.

Give **two** ways the students could increase the rate of this reaction. [2]

.....
.....

(c) The students calculated that if they used 0.5 g of magnesium in this reaction, they would make 2.0 g of magnesium chloride. However, when they used 0.5 g of magnesium only 1.7 g of magnesium chloride was made.

Calculate the percentage yield for this reaction. [2]


Percentage yield = %

10

9. Mrs Ennion asked her Year 10 class what they knew about fluoride in drinking water.

Peter, Imran, Catrin and Susan's responses are shown.

Use your own knowledge of fluoridation to comment on each of these responses.

[6 QER]

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

6

10. The table below gives information about seven elements, **A-G**.

Element	Melting point (°C)	Boiling point (°C)	Electrical conductivity	Malleability
A	839	1484	good	good
B	-23	115	poor	
C	1414	3265	poor	poor
D	-102	-34	poor	
E	10	112	poor	poor
F	-188	-42	poor	
G	660	2470	good	good

(a) Use information from the table to answer parts (i)-(iii).

(i) Give the **letter** of the element that has the greatest difference between its melting point and boiling point. [1]

.....

(ii) Give the **letters** of the **two** elements that are gases at room temperature, 20 °C.

Give a reason for your choice. [2]

Letters and

Reason

.....

Examiner
only

(iii) Give the **letter** of the element that is a metalloid.

Explain your choice. [2]

Letter

Explanation

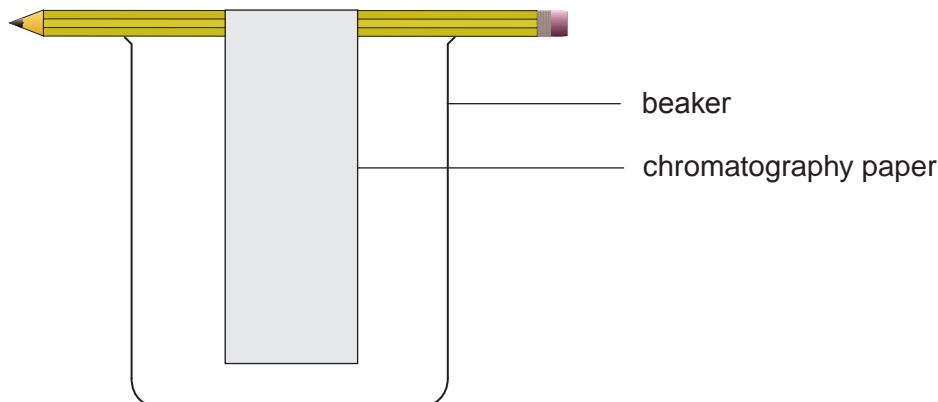
.....

.....

(b) One of the elements is aluminium. It reacts spectacularly with iron(III) oxide in the thermit reaction.

Complete and balance the equation for the reaction between aluminium and iron(III) oxide to produce aluminium oxide and iron. [2]

7


11. (a) Amanda wanted to determine what coloured dyes were present in a sample of orange ink.

The diagram shows a piece of chromatography paper, supported by a pencil, placed in a beaker at the start of her experiment.

Complete the diagram by showing

- the position of the ink sample at the start
- the water level in the beaker

[2]

(b) The table shows the R_f values for some coloured dyes that are found in inks.

Dye colour	R_f value
blue	0.40
yellow	0.25
red	0.70
green	0.15

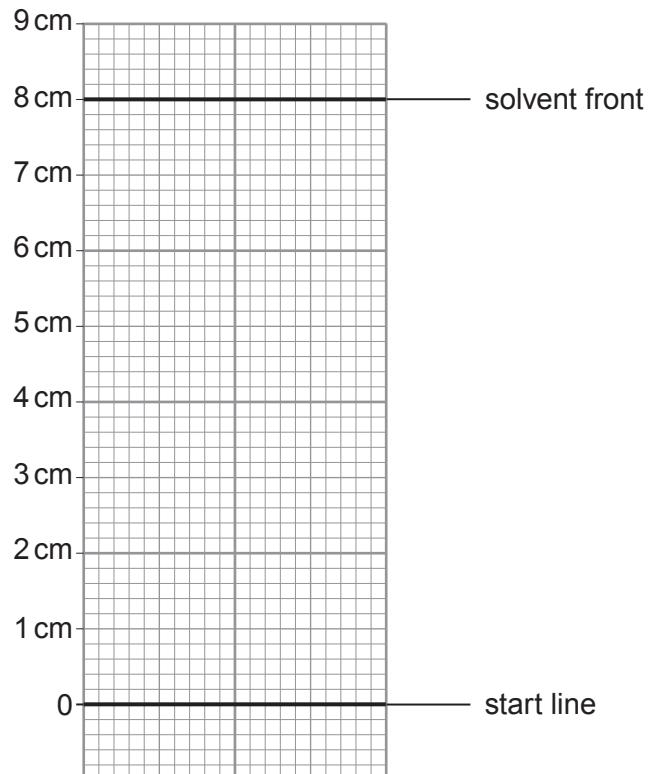
(i) Explain why coloured dyes have different R_f values.

[2]

.....

.....

.....



(ii) Orange ink separates into red and yellow dyes.

On the chromatogram, draw the positions of the spots you would expect to see after a sample of orange ink has been analysed by chromatography. [2]

Use the formula

$$\text{distance travelled by dye} = R_f \text{ value} \times \text{distance travelled by solvent}$$

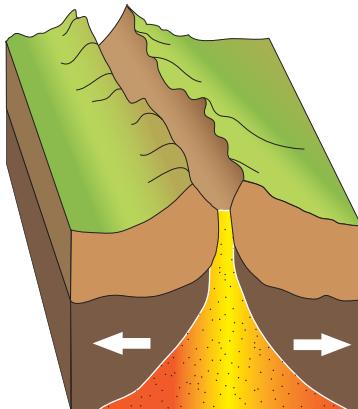
Examiner
only

6

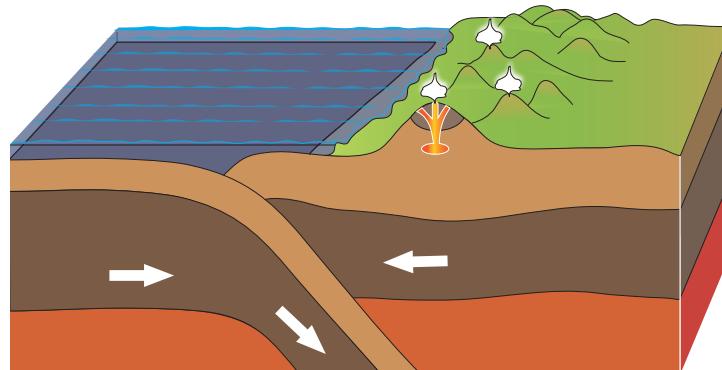
12. (a) Wegener's theory of continental drift was not accepted by other scientists during his lifetime because he had no explanation of how the continents moved.

We now know that the continents sit on tectonic plates which move very slowly.

State why these plates move.


[1]

.....
.....


(b) The diagrams below show two different types of plate boundary.

At a constructive plate boundary, the plates move away from each other.

At a destructive plate boundary, the plates move towards each other.

Constructive

Destructive

Describe what happens at each type of boundary.

[4]

Constructive

.....
.....
.....

Destructive

.....
.....
.....

(c) The cities of Los Angeles and San Francisco are on opposite sides of a conservative plate boundary at a distance of 600 km apart.

They are moving closer together as the plates slide past one another at a relative speed of about 40 mm per year.

Use the formula below to calculate the amount of time before the cities are next to one another.

[2]

$$\text{time} = \frac{\text{distance}}{\text{speed}}$$

$$1 \text{ km} = 1000 \text{ m}$$

$$1 \text{ m} = 1000 \text{ mm}$$

Time = years

7

END OF PAPER

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

FORMULAE FOR SOME COMMON IONS

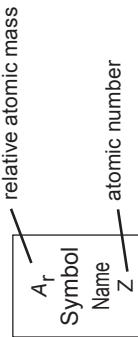
POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
aluminium	Al^{3+}	bromide	Br^-
ammonium	NH_4^+	carbonate	CO_3^{2-}
barium	Ba^{2+}	chloride	Cl^-
calcium	Ca^{2+}	fluoride	F^-
copper(II)	Cu^{2+}	hydroxide	OH^-
hydrogen	H^+	iodide	I^-
iron(II)	Fe^{2+}	nitrate	NO_3^-
iron(III)	Fe^{3+}	oxide	O^{2-}
lithium	Li^+	sulfate	SO_4^{2-}
magnesium	Mg^{2+}		
nickel	Ni^{2+}		
potassium	K^+		
silver	Ag^+		
sodium	Na^+		
zinc	Zn^{2+}		

THE PERIODIC TABLE

Group

1 2

28


1	H	Hydrogen	1
---	---	----------	---

7	Li	9	Be	Beryllium
3	Lithium	4	Beryllium	
23	Na	24	Mg	Magnesium
11	Sodium	12	Magnesium	
39	K	40	Ca	Calcium
19	Potassium	20	Sc	Scandium
		21	Ti	Titanium
		22	V	Vanadium
		23	Cr	Chromium
		24	Mn	Manganese
		25	Fe	Iron
		26	Co	Cobalt
		27	Ni	Nickel
		28	Cu	Copper
		29	Zn	Zinc
		30	Ga	Gallium
		31	In	In
		32	Ge	Germanium
		33	As	Arsenic
		34	Se	Selenium
		35	Br	Bromine
		36	Kr	Krypton

1	11	12	14	16	19	4
Li	Boron	Carbon	Nitrogen	Oxygen	Fluorine	He
3	5	6	7	8	9	2
						Helium
23	27	28	31	32	35.5	20
Na	Al	Si	P	S	Cl	Ne
11	13	14	15	16	17	10
						Neon
39	40	45	51	56	63.5	28
K	Ca	Sc	Cr	Co	Cu	
19	20	21	24	27	29	
86	88	89	91	99	101	112
Rb	Sr	Y	Zr	Mo	Ru	Cd
37	38	39	40	42	43	48
133	137	139	179	184	190	197
Cs	Ba	La	Hf	Re	Os	Au
55	56	57	72	73	75	79
223	226	227				
Fr	Ra	Ac				
87	88	89				

28

Key

